tensorflow-workspace/mobilenetv1/base_func.py

388 lines
15 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from subprocess import Popen, PIPE
import tensorflow as tf
import numpy as np
from scipy import misc
from scipy import interpolate
from tensorflow.python.training import training
import random
import re
from tensorflow.python.platform import gfile
import math
import time
from six import iteritems
def get_image_paths_and_labels(dataset):
image_paths_flat = []
labels_flat = []
for i in range(len(dataset)):
image_paths_flat += dataset[i].image_paths
labels_flat += [i] * len(dataset[i].image_paths)
return image_paths_flat, labels_flat
def shuffle_examples(image_paths, labels):
shuffle_list = list(zip(image_paths, labels))
random.shuffle(shuffle_list)
image_paths_shuff, labels_shuff = zip(*shuffle_list)
return image_paths_shuff, labels_shuff
def random_rotate_image(image):
angle = np.random.uniform(low=-10.0, high=10.0)
return misc.imrotate(image, angle, 'bicubic')
# 1: Random rotate 2: Random crop 4: Random flip 8: Fixed image standardization 16: Flip
RANDOM_ROTATE = 1
RANDOM_CROP = 2
RANDOM_FLIP = 4
FIXED_STANDARDIZATION = 8
FLIP = 16
def create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder):
t=time.time()
images_and_labels_list = []
for _ in range(nrof_preprocess_threads):
filenames, label, control = input_queue.dequeue()
images = []
for filename in tf.unstack(filenames):
file_contents = tf.read_file(filename)
image = tf.image.decode_image(file_contents, 3)
# image = tf.image.resize_images(image, [image_size[0], image_size[1]],method=tf.image.ResizeMethod.BILINEAR)
image = tf.cond(get_control_flag(control[0], RANDOM_ROTATE),
lambda:tf.py_func(random_rotate_image, [image], tf.uint8),
lambda:tf.identity(image))
image = tf.cond(get_control_flag(control[0], RANDOM_CROP),
lambda:tf.random_crop(image, image_size + (3,)),
lambda:tf.image.resize_image_with_crop_or_pad(image, image_size[0], image_size[1]))
image = tf.cond(get_control_flag(control[0], RANDOM_FLIP),
lambda:tf.image.random_flip_left_right(image),
lambda:tf.identity(image))
image = tf.cond(get_control_flag(control[0], FIXED_STANDARDIZATION),
lambda:(tf.cast(image, tf.float32))/255.0,
lambda:tf.image.per_image_standardization(image))
image = tf.cond(get_control_flag(control[0], FLIP),
lambda:tf.image.flip_left_right(image),
lambda:tf.identity(image))
#pylint: disable=no-member
image.set_shape(image_size + (3,))
images.append(image)
images_and_labels_list.append([images, label])
image_batch, label_batch = tf.train.batch_join(
images_and_labels_list, batch_size=batch_size_placeholder,
shapes=[image_size + (3,), ()], enqueue_many=True,
capacity=4 * nrof_preprocess_threads * 100,
allow_smaller_final_batch=True)
tt = time.time()-t
print('pre_process time %f' % tt)
print('LLLLLLLLLLLLLLLLL')
return image_batch, label_batch
def get_control_flag(control, field):
return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
def _add_loss_summaries(total_loss):
"""Add summaries for losses.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summmary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(l.op.name +' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
def train(total_loss, global_step, optimizer, learning_rate, moving_average_decay, update_gradient_vars, log_histograms=True):
# Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss)
# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
if optimizer=='ADAGRAD':
opt = tf.train.AdagradOptimizer(learning_rate)
elif optimizer=='ADADELTA':
opt = tf.train.AdadeltaOptimizer(learning_rate, rho=0.9, epsilon=1e-6)
elif optimizer=='ADAM':
opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1)
elif optimizer=='RMSPROP':
opt = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.9, epsilon=1.0)
elif optimizer=='MOM':
opt = tf.train.MomentumOptimizer(learning_rate, 0.9, use_nesterov=True)
else:
raise ValueError('Invalid optimization algorithm')
grads = opt.compute_gradients(total_loss, update_gradient_vars)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
if log_histograms:
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
# Add histograms for gradients.
if log_histograms:
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
moving_average_decay, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train')
return train_op
def prewhiten(x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.maximum(std, 1.0/np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1/std_adj)
return y
def prewhiten_fix(x):
y = x/255.
return y
def crop(image, random_crop, image_size):
image_crop = np.zeros((image_size, image_size, 3))
m_min = image.shape[0] if image.shape[0]<image.shape[1] else image.shape[1]
m_max = image.shape[0] if image.shape[0]>image.shape[1] else image.shape[1]
if m_max < image_size:
v_0 = (image_size-m_max)//2
image_crop[v_0:v_0+image_size,v_0:v_0+image_size,:] = image
elif m_min < image_size:
if image.shape[0]<image.shape[1]:
h_0 = (image_size - m_min)//2
v_0 = (image.shape[1] - image_size)//2
image_crop[h_0:h_0+image.shape[0],0:image_size,:] = image[0:image.shape[0],v_0:v_0+image_size,:]
else:
h_0 = (image.shape[0] - image_size)//2
v_0 = (image_size - m_min)//2
image_crop[0:image_size,v_0:v_0+image.shape[1]:] = image[h_0:h_0+image_size,0:image.shape[1],:]
else:
sz1 = int(image.shape[1]//2)
sz2 = int(image_size//2)
if random_crop:
diff = sz1-sz2
(h, v) = (np.random.randint(-diff, diff+1), np.random.randint(-diff, diff+1))
else:
(h, v) = (0,0)
image = image[(sz1-sz2+v):(sz1+sz2+v),(sz1-sz2+h):(sz1+sz2+h),:]
return image
def flip(image, random_flip):
if random_flip and np.random.choice([True, False]):
image = np.fliplr(image)
return image
def to_rgb(img):
w, h = img.shape
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
return ret
def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True):
print("enter load_data")
nrof_samples = len(image_paths)
images = np.zeros((nrof_samples, image_size, image_size, 3))
for i in range(nrof_samples):
img = misc.imread(image_paths[i])
if img.ndim == 2:
img = to_rgb(img)
if 1:
print("enter whiten")
# img = prewhiten(img)
img = img/255.0
img = crop(img, do_random_crop, image_size)
img = misc.imresize(img, (image_size, image_size), interp='bilinear')
img = flip(img, do_random_flip)
images[i,:,:,:] = img
return images
def get_label_batch(label_data, batch_size, batch_index):
nrof_examples = np.size(label_data, 0)
j = batch_index*batch_size % nrof_examples
if j+batch_size<=nrof_examples:
batch = label_data[j:j+batch_size]
else:
x1 = label_data[j:nrof_examples]
x2 = label_data[0:nrof_examples-j]
batch = np.vstack([x1,x2])
batch_int = batch.astype(np.int64)
return batch_int
def get_batch(image_data, batch_size, batch_index):
nrof_examples = np.size(image_data, 0)
j = batch_index*batch_size % nrof_examples
if j+batch_size<=nrof_examples:
batch = image_data[j:j+batch_size,:,:,:]
else:
x1 = image_data[j:nrof_examples,:,:,:]
x2 = image_data[0:nrof_examples-j,:,:,:]
batch = np.vstack([x1,x2])
batch_float = batch.astype(np.float32)
return batch_float
def get_learning_rate_from_file(filename, epoch):
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split('#', 1)[0]
if line:
par = line.strip().split(':')
e = int(par[0])
if par[1]=='-':
lr = -1
else:
lr = float(par[1])
if e <= epoch:
learning_rate = lr
else:
return learning_rate
class ImageClass():
"Stores the paths to images for a given class"
def __init__(self, name, image_paths):
self.name = name
self.image_paths = image_paths
def __str__(self):
return self.name + ', ' + str(len(self.image_paths)) + ' images'
def __len__(self):
return len(self.image_paths)
def get_dataset(path, has_class_directories=True):
dataset = []
path_exp = os.path.expanduser(path)
classes = [path for path in os.listdir(path_exp) \
if os.path.isdir(os.path.join(path_exp, path))]
classes.sort()
nrof_classes = len(classes)
# with open("label.txt","w") as f:
# for ii in range(nrof_classes):
# f.writelines(classes[ii]+"\n")
for i in range(nrof_classes):
class_name = classes[i]
facedir = os.path.join(path_exp, class_name)
image_paths = get_image_paths(facedir)
dataset.append(ImageClass(class_name, image_paths))
return dataset
def get_image_paths(facedir):
image_paths = []
if os.path.isdir(facedir):
images = os.listdir(facedir)
image_paths = [os.path.join(facedir,img) for img in images]
return image_paths
def split_dataset(dataset, split_ratio, min_nrof_images_per_class, mode):
if mode=='SPLIT_CLASSES':
nrof_classes = len(dataset)
class_indices = np.arange(nrof_classes)
np.random.shuffle(class_indices)
split = int(round(nrof_classes*(1-split_ratio)))
train_set = [dataset[i] for i in class_indices[0:split]]
test_set = [dataset[i] for i in class_indices[split:-1]]
elif mode=='SPLIT_IMAGES':
train_set = []
test_set = []
for cls in dataset:
paths = cls.image_paths
np.random.shuffle(paths)
nrof_images_in_class = len(paths)
split = int(math.floor(nrof_images_in_class*(1-split_ratio)))
if split==nrof_images_in_class:
split = nrof_images_in_class-1
if split>=min_nrof_images_per_class and nrof_images_in_class-split>=1:
train_set.append(ImageClass(cls.name, paths[:split]))
test_set.append(ImageClass(cls.name, paths[split:]))
else:
raise ValueError('Invalid train/test split mode "%s"' % mode)
return train_set, test_set
def load_model(model, input_map=None):
# Check if the model is a model directory (containing a metagraph and a checkpoint file)
# or if it is a protobuf file with a frozen graph
model_exp = os.path.expanduser(model)
if (os.path.isfile(model_exp)):
print('Model filename: %s' % model_exp)
with gfile.FastGFile(model_exp,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, input_map=input_map, name='')
else:
print('Model directory: %s' % model_exp)
meta_file, ckpt_file = get_model_filenames(model_exp)
print('Metagraph file: %s' % meta_file)
print('Checkpoint file: %s' % ckpt_file)
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file), input_map=input_map)
saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file))
def get_model_filenames(model_dir):
files = os.listdir(model_dir)
meta_files = [s for s in files if s.endswith('.meta')]
if len(meta_files)==0:
raise ValueError('No meta file found in the model directory (%s)' % model_dir)
elif len(meta_files)>1:
raise ValueError('There should not be more than one meta file in the model directory (%s)' % model_dir)
meta_file = meta_files[0]
ckpt = tf.train.get_checkpoint_state(model_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_file = os.path.basename(ckpt.model_checkpoint_path)
return meta_file, ckpt_file
meta_files = [s for s in files if '.ckpt' in s]
max_step = -1
for f in files:
step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', f)
if step_str is not None and len(step_str.groups())>=2:
step = int(step_str.groups()[1])
if step > max_step:
max_step = step
ckpt_file = step_str.groups()[0]
return meta_file, ckpt_file
def list_variables(filename):
reader = training.NewCheckpointReader(filename)
variable_map = reader.get_variable_to_shape_map()
names = sorted(variable_map.keys())
return names
def write_arguments_to_file(args, filename):
with open(filename, 'w') as f:
for key, value in iteritems(vars(args)):
f.write('%s: %s\n' % (key, str(value)))